
1

1

Concluding Remarks Concluding Remarks --
Future DirectionsFuture Directions

Jack Dongarra
Innovative Computing Lab
University of Tennessee

http://http://www.cs.utk.edu/~dongarrawww.cs.utk.edu/~dongarra//

2

Software Technology & PerformanceSoftware Technology & Performance

♦ Tendency to focus on hardware
♦ Software required to bridge an ever widening gap
♦ Gaps between usable and deliverable performance

is very steep
Ø Performance only if the data and controls are setup just

right
ØOtherwise, dramatic performance degradations, very

unstable situation
ØWill become more unstable

♦ Challenge of Libraries, PSEs and Tools is
formidable with Tflop/s level, even greater with
Pflops, some might say insurmountable.

2

3

The Need for The Need for AdaptivityAdaptivity

♦ Growing complexity of the systems we use
threatens to undermine the benefits they
aim to provide.

♦ We’ve relied mainly on human interactions
to manage the complexity.

♦ With the complexity growing it is
becoming beyond the ability to manage
effectively.

♦ Hide the complexities while optimizing the
resources.

4

Types Of Types Of AdaptivityAdaptivity

§ Adaptation to the environment
§ Processor: investigate processor hardware

characteristics and optimize for them
§ Network: investigate connectivity, latency, bandwidth,

congestion, load
§ Adaptation to user data: investigate user data

and make decisions based thereon
§ Static adaptivity: adapt yourself to the

environment during, potentially expensive, setup
phase

§ Dynamic adaptivity: at run-time adapt to
current conditions, both user data and
computational environment

3

5

Where Does the Performance Go? orWhere Does the Performance Go? or
Why Should I Care About the Memory Hierarchy?Why Should I Care About the Memory Hierarchy?

1

10

100

1000

10000

100000

198
0

198
2

198
4

198
6

198
8

199
0

199
2

199
4

199
6

199
8

200
0

200
2

200
4

Year

P
er

fo
rm

an
ce

Memory
CPU

Processor-DRAM Memory Gap (latency) µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

“Moore’s Law”

Processor-Memory
Performance Gap:
(grows 50% / year)

6

Optimizing Computation and Optimizing Computation and
Memory UseMemory Use

♦ Computational optimizations
ØTheoretical peak:(# fpus)*(flops/cycle) * Mhz

Ø Pentium 4: (1 fpu)*(2 flops/cycle)*(2.53 Ghz) = 5060 MFLOP/s

♦ Operations like:
Ø α = xTy : 2 operands (16 Bytes) needed for 2 flops;

at 5060 Mflop/s will requires 5060 MWord/s bandwidth
Ø y = α x + y : 3 operands (24 Bytes) needed for 2 flops;

at 5060 Mflop/s will requires 7590 MWord/s bandwidth

♦ Memory optimization
ØTheoretical peak: (bus width) * (bus speed)
Ø Pentium 4: (32 bits)*(533 Mhz) = 2132 MB/s = 266 MWord/s

4

7

Memory HierarchyMemory Hierarchy
♦ By taking advantage of the principle of locality:
Ø Present the user with as much memory as is available in

the cheapest technology.
Ø Provide access at the speed offered by the fastest

technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Level
2 and 3
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

100,000 s
(.1s ms)

Speed (ns): 10s 100s

100s

Gs

Size (bytes):
Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s
(10s sec)

10,000,000 s
(10s ms)

Ts

Distributed
Memory

Remote
Cluster
Memory

8

Self Adapting SoftwareSelf Adapting Software
♦ Software system that …
ØObtains information on the underlying system

where they will run.
ØAdapts application to the presented data and the

available resources perhaps provide automatic
algorithm selection
ØDuring execution perform optimization and perhaps

reconfigure based on newly available resources.
ØAllow the user to provide for faults and recover

without additional users involvement
♦ The moral of the story
ØWe know the concepts of how to improve things.
ØCapture insights/experience – do what humans do

well
ØAutomate the dull stuff

5

9

SANS SANS
(Self Adapting Numerical Software)(Self Adapting Numerical Software)

♦ Design a system that can adjust to
varying circumstances and deal with
the environment effectively.
ØConfigure and perhaps reconfigure
itself under varying and unpredictable
conditions.
ØOptimize the operations to fit the
environment.
ØDetect faults and recover gracefully.

10

Software Generation Software Generation
Strategy Strategy -- ATLAS BLASATLAS BLAS

♦ Takes ~ 20 minutes to run,
generates Level 1,2, & 3 BLAS

♦ “New” model of high
performance programming
where critical code is machine
generated using parameter
optimization.

♦ Designed for modern
architectures
Ø Need reasonable C compiler

♦ Today ATLAS in used within
various ASCI and SciDAC
activities and by Matlab,
Mathematica, Octave, Maple,
Debian, Scyld Beowulf, SuSE,…

♦ Parameter study of the hw
♦ Generate multiple versions

of code, w/difference
values of key performance
parameters

♦ Run and measure the
performance for various
versions

♦ Pick best and generate
library

♦ Level 1 cache multiply
optimizes for:
Ø TLB access
Ø L1 cache reuse
Ø FP unit usage
Ø Memory fetch
Ø Register reuse
Ø Loop overhead minimization

6

11

ATLAS ATLAS (DGEMM n = 500)(DGEMM n = 500)

♦ ATLAS is faster than all other portable BLAS implementations and it is
comparable with machine-specific libraries provided by the vendor.

♦ Looking at sparse operations

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

AMD Athl
on

-60
0

DEC
 ev

56-
533

DEC
 ev

6-5
00

HP9
000

/73
5/1

35

IBM PP
C604

-11
2

IBM Po
wer2

-16
0

IBM Po
wer3

-20
0

Inte
l P-

III 9
33

MHz

Inte
l P-

4 2
.53

 GHz w
/SS

E2

SG
I R

100
00i

p28
-20

0

SG
I R

120
00i

p3
0-2

70

Sun
 Ultra

Spa
rc2

-20
0

Architectures

M
F

L
O

P
/S

Vendor BLAS
ATLAS BLAS
F77 BLAS

12

LAPACK For ClustersLAPACK For Clusters
♦ Developing middleware which couples cluster system

information with the specifics of a user problem to
launch cluster based applications on the “best” set of
resource available.

♦ Using ScaLAPACK as the prototype software, but
developing a framework

~ Mbit Switch,
(fully connected)

~ Gbit Switch,
(fully connected)

Remote memory server,
e.g. IBP (TCP/IP)

Local network file server,
SUN’s NFS (UDP/IP)e.g. 100 Mbit

Users, etc.

7

13

User has problem to solve (e.g. Ax = b)

Natural
Data (A,b)

Middleware

Application Library (e.g. LAPACK,
ScaLAPACK, PETSc,…)

Natural
Answer (x)

Structured
Data (A’,b’)

Structured
Answer (x’)

User Interface/MiddlewareUser Interface/Middleware

14

SALSA: SALSA: Self-Adaptive Linear Solver
Architecture

• Run-time adaptation to user
data for linear system solving

♦ Choice between direct/iterative
solver
Ø Space and runtime considerations
Ø Numerical properties of system

♦ Choice of preconditioner, scaling,
ordering, decomposition

♦ User steering of decision process
♦ Insertion of performance data in

database
♦ Metadata on both numerical data and

algorithms
♦ Heuristics-driven automated analysis
♦ Self-adaptivity: tuning of heuristics

over time through experience gained
from production runs

8

15

Research DirectionsResearch Directions
♦ Parameterizable libraries
♦ Fault tolerant algorithms
♦ Annotated libraries
♦ Hierarchical algorithm libraries
♦ “Grid” (network) enabled strategies

A new division of labor between
compiler writers, library writers, and
algorithm developers and application
developers will emerge.

16

Future SANS EffortFuture SANS Effort
♦ Intelligent Component
ØAutomates method selection based on data,

algorithm, and system attributes
♦ System component
ØProvides intelligent management of and access

to clusters and computational grids
♦ History database
ØRecords relevant info generated by the IC and

maintains past performance data
♦ Fault Tolerant Aspect
ØTransparently detect and recover from failure
ØFT-MPI
ØAlgorithmic Fault Tolerance

9

17

Questions?Questions?

♦ Thanks for your participation

